2024 MCAS Informational Webinar on ConstructedResponses

Sample Constructed-Response Item Training Pack

High School Introductory Physics Roller Coaster

This question has four parts.

A diagram of a roller coaster track at an amusement park is shown. The location where passengers get into a car to ride along the track is labeled "Start." Four additional points along the track are labeled $\mathrm{W}, \mathrm{X}, \mathrm{Y}$, and Z .

For one ride, a car and its passengers had a total mass of 4500 kg . The car was pulled with a motor from the starting point to point W . The car was held at rest at point W until it was released. The car then moved along the track to point Z with negligible friction.

Part A

Identify the point on the roller coaster track where the car and its passengers had the greatest amount of gravitational potential energy.

Part B

Calculate the amount of gravitational potential energy the car and its passengers had at the point you identified in Part A. Show your calculations and include units in your answer.

Part C

Compare the amount of kinetic energy of the car and its passengers at point Y to the amount of kinetic energy of the car and its passengers at point Z. Explain your reasoning.

Part D

Identify the height at which the kinetic energy of the car and its passengers was equal to the gravitational potential energy of the car and its passengers. Explain your reasoning.

Scoring Guide

Score	Description
$\mathbf{4}$	The response demonstrates a thorough understanding of energy conservation, including the transformation of gravitational potential energy to kinetic energy. The response correctly identifies the point where the car had the greatest gravitational potential energy and correctly calculates the car's gravitational potential energy at that point. The response correctly compares the car's kinetic energy at point Y to the car's kinetic energy at point Z and clearly explains the reasoning. The response also correctly identifies the height at which the kinetic energy of the car was equal to the gravitational potential energy of the car and clearly explains the reasoning.
$\mathbf{3}$	The response demonstrates a general understanding of energy conservation, including the transformation of gravitational potential energy to kinetic energy.
$\mathbf{2}$	The response demonstrates a limited understanding of energy conservation, including the transformation of gravitational potential energy to kinetic energy.
$\mathbf{1}$	The response demonstrates a minimal understanding of energy conservation, including the transformation of gravitational potential energy to kinetic energy.
$\mathbf{0}$	The response is incorrect or contains some correct work that is irrelevant to the skill or concept being measured.
Blank	No response.

Scoring Notes

Part A

Point W

Part B

$P E=m g h=(4500 \mathrm{~kg})\left(10 \mathrm{~m} / \mathrm{s}^{2}\right)(50 \mathrm{~m})=2,250,000 \mathrm{~J}$ OR 2,205,000 J if $9.8 \mathrm{~m} / \mathrm{s}^{2}$ is used.
Note: Only accept correct calculations based on an incorrect ID in Part A for scoring going from 0 to 1 .

Part C

At point Y, the kinetic energy is less than the kinetic energy at point Z because point Y is at a greater height than point Z. OR because the GPE at point Y is greater than the GPE at point Z, so the $K E$ at point Y must be less than the $K E$ at point Z.

Part D

At point X OR $\mathrm{h}=25 \mathrm{~m}$ because (any one of the following):

- it is where the car is at half of its original height.
- half of the GPE at point W has been converted to KE.
- it is in the middle of/between the lowest and highest points [0 m and 50 m].

Each part is worth 1 point.
To receive a score of 4, all calculations and units must be included and be correct.

Anchor Set of Student Responses (with scores)

Roller Coaster

Anchor Score 4

This question has four parts.

A diagram of a roller coaster track at an amusement park is shown. The location where passengers get into a car to ride along the track is labeled "Start." Four additional points along the track are labeled $\mathrm{W}, \mathrm{X}, \mathrm{Y}$, and Z .

For one ride, a car and its passengers had a total mass of 4500 kg . The car was pulled with a motor from the starting point to point W . The car was held at rest at point W until it was released. The car then moved along the track to point Z with negligible friction.

Part A

Identify the point on the roller coaster track where the car and its passengers had the greatest amount of gravitational potential energy.
\square
The car and its passengers had the most gravitational potential energy at Point W , the highest point above the ground (50 m)

Part B

Calculate the amount of gravitational potential energy the car and its passengers had at the point you identified in Part A. Show your calculations and include units in your answer.
h \rightarrow 盀
$U_{g}=m g h$
$\square=4500 \cdot 10 \cdot 50$
$\square=2,250,000 \mathrm{~J}$

Part C

Compare the amount of kinetic energy of the car and its passengers at point Y to the amount of kinetic energy of the car and its passengers at point Z. Explain your reasoning.

The car and its passengers have more kinetic energy at point Z than point Y, because energy has to be conserved. There is more potential energy at point Y than point Z because point Y is higher off the ground, but the total mechanical energy at both points must be the same, meaning there is more kinetic energy at point Z and less at point Y.

Part D

Identify the height at which the kinetic energy of the car and its passengers was equal to the gravitational potential energy of the car and its passengers. Explain your reasoning.

The kinetic and potential energy for the car and its passengers are equal at 25 m (point X), because the car has moved downward halfway from its original point, meaning its potential energyis also half as much. The other half has been converted into kinetic energy, meaning the kinetic and potential energy is the same.

Anchor Score 3

This question has four parts.

A diagram of a roller coaster track at an amusement park is shown. The location where passengers get into a car to ride along the track is labeled "Start." Four additional points along the track are labeled $\mathrm{W}, \mathrm{X}, \mathrm{Y}$, and Z .

For one ride, a car and its passengers had a total mass of 4500 kg . The car was pulled with a motor from the starting point to point W . The car was held at rest at point W until it was released. The car then moved along the track to point Z with negligible friction.

Part A

Identify the point on the roller coaster track where the car and its passengers had the greatest amount of gravitational potential energy.

The passangers had the most potential energy on point W because its the highest point.

Part B

Calculate the amount of gravitational potential energy the car and its passengers had at the point you identified in Part A. Show your calculations and include units in your answer.

\rightarrow त畾

$$
\begin{aligned}
& \mathrm{PE}=\mathrm{mgh} \\
& \mathrm{PE}=4500 \cdot 10 \cdot 50 \\
& P E=2,250,000 \mathrm{~J}
\end{aligned}
$$

Part C

Compare the amount of kinetic energy of the car and its passengers at point Y to the amount of kinetic energy of the car and its passengers at point Z. Explain your reasoning.

Point Y has less kinetic energy than pont Z because it it is at a higher point. In other words, Point Z has greater KE because it is at a lower point.

Part D

Identify the height at which the kinetic energy of the car and its passengers was equal to the gravitational potential energy of the car and its passengers. Explain your reasoning.

The highest and lowest heights would be equal because PE is converted to KE has it moves downward.

Anchor Score 2

This question has four parts.

A diagram of a roller coaster track at an amusement park is shown. The location where passengers get into a car to ride along the track is labeled "Start." Four additional points along the track are labeled $\mathrm{W}, \mathrm{X}, \mathrm{Y}$, and Z .

For one ride, a car and its passengers had a total mass of 4500 kg . The car was pulled with a motor from the starting point to point W . The car was held at rest at point W until it was released. The car then moved along the track to point Z with negligible friction.

Part A

Identify the point on the roller coaster track where the car and its passengers had the greatest amount of gravitational potential energy.

Part B

Calculate the amount of gravitational potential energy the car and its passengers had at the point you identified in Part A. Show your calculations and include units in your answer.

- \rightarrow 羊

$\Delta \mathrm{PE}=m y \Delta \mathrm{~h}$
 $\Delta \mathrm{PE}=4500(10)(50)$
 $\Delta P E=2250000 \mathrm{~J}$

Part C

Compare the amount of kinetic energy of the car and its passengers at point Y to the amount of kinetic energy of the car and its passengers at point Z. Explain your reasoning.

Part D

Identify the height at which the kinetic energy of the car and its passengers was equal to the gravitational potential energy of the car and its passengers. Explain your reasoning.

W the kinetic energy and potential energy are the same.

Anchor Score 1

This question has four parts.

A diagram of a roller coaster track at an amusement park is shown. The location where passengers get into a car to ride along the track is labeled "Start." Four additional points along the track are labeled $\mathrm{W}, \mathrm{X}, \mathrm{Y}$, and Z .

For one ride, a car and its passengers had a total mass of 4500 kg . The car was pulled with a motor from the starting point to point W . The car was held at rest at point W until it was released. The car then moved along the track to point Z with negligible friction.

Part A

Identify the point on the roller coaster track where the car and its passengers had the greatest amount of gravitational potential energy.

The roller coaster track had the most gravitational potential energy at point W .

Part B

Calculate the amount of gravitational potential energy the car and its passengers had at the point you identified in Part A. Show your calculations and include units in your answer.

$4500 \mathrm{~kg} \div 50=90 \mathrm{~m}$

Part C

Compare the amount of kinetic energy of the car and its passengers at point Y to the amount of kinetic energy of the car and its passengers at point Z. Explain your reasoning.

There was more kinetic energy at point Y because it's 40 m and point Z only has 8 m

Part D

Identify the height at which the kinetic energy of the car and its passengers was equal to the gravitational potential energy of the car and its passengers. Explain your reasoning.

Point Y is closer to point W which has the most gravitational potential energy

Anchor Score 0

This question has four parts.

A diagram of a roller coaster track at an amusement park is shown. The location where passengers get into a car to ride along the track is labeled "Start." Four additional points along the track are labeled $\mathrm{W}, \mathrm{X}, \mathrm{Y}$, and Z .

For one ride, a car and its passengers had a total mass of 4500 kg . The car was pulled with a motor from the starting point to point W . The car was held at rest at point W until it was released. The car then moved along the track to point Z with negligible friction.

Part A

Identify the point on the roller coaster track where the car and its passengers had the greatest amount of gravitational potential energy.

the point where the car and the passengers had the greatest amount of gravitational potential energy is at point Y .

Part B

Calculate the amount of gravitational potential energy the car and its passengers had at the point you identified in Part A. Show your calculations and include units in your answer.

\rightarrow (並

the calculation would be 5×8 which would equal 40 m

- Symbols
- Relations
- Geometry
- Groups

- Groups

Part C

Compare the amount of kinetic energy of the car and its passengers at point Y to the amount of kinetic energy of the car and its passengers at point Z. Explain your reasoning.

the amount of kinetic energy is 5 m because when you divid 40 and 8 it equals 5 m

Part D

Identify the height at which the kinetic energy of the car and its passengers was equal to the gravitational potential energy of the car and its passengers. Explain your reasoning.

The height that is equal to gravitational potential energy is at point W because $4500 / 50$ would be the height whitch would be 90 m

Set of Student Responses without Scores (for educator practice)

 Roller Coster
Response A

This question has four parts.

A diagram of a roller coaster track at an amusement park is shown. The location where passengers get into a car to ride along the track is labeled "Start." Four additional points along the track are labeled W, X, Y , and Z .

For one ride, a car and its passengers had a total mass of 4500 kg . The car was pulled with a motor from the starting point to point W . The car was held at rest at point W until it was released. The car then moved along the track to point Z with negligible friction.

Part A

Identify the point on the roller coaster track where the car and its passengers had the greatest amount of gravitational potential energy.

Part B

Calculate the amount of gravitational potential energy the car and its passengers had at the point you identified in Part A. Show your calculations and include units in your answer.

Part C

Compare the amount of kinetic energy of the car and its passengers at point Y to the amount of kinetic energy of the car and its passengers at point Z. Explain your reasoning.

Part D

Identify the height at which the kinetic energy of the car and its passengers was equal to the gravitational potential energy of the car and its passengers. Explain your reasoning.

Height W because it's the highest height and the highest height has the highest gravitational potential energy so they are equal to each other.

Response B

This question has four parts.

A diagram of a roller coaster track at an amusement park is shown. The location where passengers get into a car to ride along the track is labeled "Start." Four additional points along the track are labeled W, X, Y , and Z .

For one ride, a car and its passengers had a total mass of 4500 kg . The car was pulled with a motor from the starting point to point W . The car was held at rest at point W until it was released. The car then moved along the track to point Z with negligible friction.

Part A

Identify the point on the roller coaster track where the car and its passengers had the greatest amount of gravitational potential energy.

at point "W" the passengers had the greatest amount of gravitational potential energy because that where the rollercoaster car is at it's highest point.

Part B

Calculate the amount of gravitational potential energy the car and its passengers had at the point you identified in Part A. Show your calculations and include units in your answer.

Part C

Compare the amount of kinetic energy of the car and its passengers at point Y to the amount of kinetic energy of the car and its passengers at point Z. Explain your reasoning.

The kinetic energy at point " Y " is less than the kinetic energy at point " Z " because point " Z " is at a lower point than point " Y " and the rollercoaster car traveled from point " Y " to "Z" point " y " has decreased in speed.

Part D

Identify the height at which the kinetic energy of the car and its passengers was equal to the gravitational potential energy of the car and its passengers. Explain your reasoning.

the height of point " Z " and its KE are equal to the PE of point " W " because point " W " is the highest meaning it has the most PE and point " Z " is the lowest, having the most KE. The PE is high so the KE has to be high as well.

Response C

This question has four parts.

A diagram of a roller coaster track at an amusement park is shown. The location where passengers get into a car to ride along the track is labeled "Start." Four additional points along the track are labeled W, X, Y , and Z .

For one ride, a car and its passengers had a total mass of 4500 kg . The car was pulled with a motor from the starting point to point W . The car was held at rest at point W until it was released. The car then moved along the track to point Z with negligible friction.

Part A

Identify the point on the roller coaster track where the car and its passengers had the greatest amount of gravitational potential energy.

The car and its passengers had the greatest amount of gravitational energy on the roller coaster track at point W. It was highest line on the track.

Part B

Calculate the amount of gravitational potential energy the car and its passengers had at the point you identified in Part A. Show your calculations and include units in your answer.
h \rightarrow 亩
$50 m \times 4500=225000 m$

Part C

Compare the amount of kinetic energy of the car and its passengers at point Y to the amount of kinetic energy of the car and its passengers at point Z. Explain your reasoning.

Part D

Identify the height at which the kinetic energy of the car and its passengers was equal to the gravitational potential energy of the car and its passengers. Explain your reasoning.

The highest height is point W .

Response D

This question has four parts.

A diagram of a roller coaster track at an amusement park is shown. The location where passengers get into a car to ride along the track is labeled "Start." Four additional points along the track are labeled W, X, Y , and Z .

For one ride, a car and its passengers had a total mass of 4500 kg . The car was pulled with a motor from the starting point to point W . The car was held at rest at point W until it was released. The car then moved along the track to point Z with negligible friction.

Part A

Identify the point on the roller coaster track where the car and its passengers had the greatest amount of gravitational potential energy.

Y is the point with the greatest potential energy.

Part B

Calculate the amount of gravitational potential energy the car and its passengers had at the point you identified in Part A. Show your calculations and include units in your answer.

$4500 \mathrm{~kg} \times 10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 40 \mathrm{~m}=1,800,000 \mathrm{FN}$

Part C

Compare the amount of kinetic energy of the car and its passengers at point Y to the amount of kinetic energy of the car and its passengers at point Z. Explain your reasoning.

The amount of kinetic energy at point Y is much lower because its at a high point on the roller coaster where it's mostly potential energy. For point Z the kinetic energy is much higher as it just dropped from a high point.

Part D

Identify the height at which the kinetic energy of the car and its passengers was equal to the gravitational potential energy of the car and its passengers. Explain your reasoning.
\square
B I v
1375
At 25 m is where both potential energy and kinetic energy will be the same because it is halfway down from the highest point.

Response E

This question has four parts.

A diagram of a roller coaster track at an amusement park is shown. The location where passengers get into a car to ride along the track is labeled "Start." Four additional points along the track are labeled W, X, Y , and Z .

For one ride, a car and its passengers had a total mass of 4500 kg . The car was pulled with a motor from the starting point to point W . The car was held at rest at point W until it was released. The car then moved along the track to point Z with negligible friction.

Part A

Identify the point on the roller coaster track where the car and its passengers had the greatest amount of gravitational potential energy.

The car had the greatest amount of gravitational potential energy at point W

Part B

Calculate the amount of gravitational potential energy the car and its passengers had at the point you identified in Part A. Show your calculations and include units in your answer.

$$
\begin{aligned}
& \Delta P E=? \quad m=4500 \mathrm{~kg} \quad g=10 \cdot \frac{m}{s^{2}} \\
& \Delta h=50 \mathrm{~m} \quad \Delta P E=\mathrm{mg} \Delta h \\
& \Delta P E=4500 \mathrm{~kg} \cdot 10 \cdot \frac{m}{s^{2}} \cdot 50 m \\
& \Delta P E=2250000 J
\end{aligned}
$$

Part C

Compare the amount of kinetic energy of the car and its passengers at point Y to the amount of kinetic energy of the car and its passengers at point Z. Explain your reasoning.

The car's kinetic energy at point Y is smaller than the car's kinetic energy at point Z because point Y has a bigger height.

Part D

Identify the height at which the kinetic energy of the car and its passengers was equal to the gravitational potential energy of the car and its passengers. Explain your reasoning.

The car had half kinetic energy and half gravitational potential energy at point X because it's half of point W 's height.

2024 MCAS Informational Webinar on ConstructedResponses

Sample Constructed-Response Item Training Pack

High School Introductory Physics Series Circuit

This question has four parts.

The diagram shows a circuit with a 12 V battery, three resistors, and component K .

Part A

Identify component K and explain its main function.

Part B

Component K is replaced with a piece of wire.
Calculate the total resistance of the circuit. Show your calculations and include units in your answer.

Part C

Is the amount of current flowing through R_{1} the same as the amount of current flowing through R2? Explain your reasoning.

Part D

Calculate the voltage drop across R_{1}. Show your calculations and include units in your answer.

Scoring Guide

Score	Description
$\mathbf{4}$	The response demonstrates a thorough understanding of series circuits and Ohm's law. The response correctly identifies and clearly explains the main function of component K. The response correctly calculates the total resistance of the circuit, clearly explains whether the amount of current through R_{1} and R_{2} is the same, and also correctly calculates the voltage drop across the R_{1}.
$\mathbf{3}$	The response demonstrates a general understanding of series circuits and Ohm's law.
$\mathbf{2}$	The response demonstrates a limited understanding of series circuits and Ohm's law.
$\mathbf{1}$	The response demonstrates a minimal understanding of series circuits and Ohm's law.
$\mathbf{0}$	The response is incorrect or contains some correct work that is irrelevant to the skill or concept being measured.
Blank	No response.

Scoring Notes

Part A

Component K is a switch and is used to (any one of the following):

- turn the circuit on/off.
- allow/prevent current from flowing in the circuit.
- open/close the circuit.

Part B

Total resistance $=5 \Omega+15 \Omega+10 \Omega=30 \Omega$

Part C

The current flowing through R_{1} is the same as the current flowing through R_{2} because (any one of the following):

- the resistors are connected in series.
- there is only one pathway for the current.
- the resistors are connected on the same branch
- Circuit current: I = V/R = $12 \mathrm{~V} / 30 \Omega=0.4 \mathrm{~A}$

Part D

Voltage drop across $\mathrm{R}_{1}=\mathrm{IR}=(0.4 \mathrm{~A})(5 \Omega)=2 \mathrm{~V}$
OR There is $1 / 6$ of the total resistance, so it's $1 / 6$ the total voltage $=2 \mathrm{~V}$
Each part is worth 1 point.
To receive a score of 4, all calculations and units must be included and be correct.

Anchor Set of Student Responses (with scores)

Series Circuit

Anchor Score 4

This question has four parts.

The diagram shows a circuit with a 12 V battery, three resistors, and component K .

Part A

Identify component K and explain its main function.

Component K is a switch. It's main function is to open and close the circuit, in other words turn on and turn off the current. Because the current stops flowing when the circuit is open.

Part B

Component K is replaced with a piece of wire.
Calculate the total resistance of the circuit. Show your calculations and include units in your answer.

の -自	
$\begin{aligned} & R_{\text {total }}=R_{1}+R_{2}+R_{3}=5 \Omega+15 \Omega+10 \Omega= \\ & 30 \Omega \end{aligned}$	- Symbols
	- Geometry
	- Groups

Part C

Is the amount of current flowing through R_{1} the same as the amount of current flowing through R_{2} ? Explain your reasoning.

Yes it is. Because in a series circuit, the amount of current flowing is the same at any point.

Part D

Calculate the voltage drop across R_{1}. Show your calculations and include units in your answer.

Anchor Score 3

This question has four parts.

The diagram shows a circuit with a 12 V battery, three resistors, and component K .

Part A

Identify component K and explain its main function.
B I $\underline{\mathrm{u}}: \vdots$ 引

Component K is a switch. A switch can turn a circuit on and off, which means that it can control when there is and isn't current flowing through the circuit.

Part B

Component K is replaced with a piece of wire.
Calculate the total resistance of the circuit. Show your calculations and include units in your answer.

$\rightarrow \rightarrow$ 前

You calculate total resistance by adding up all 3 resistors: $r_{1}+r_{2}+r_{3}$.
$5 \Omega+15 \Omega+10 \Omega=30 \Omega$
There is a total of 30Ω of resistance.

Part C

Is the amount of current flowing through R_{1} the same as the amount of current flowing through R_{2} ? Explain your reasoning.

$\begin{array}{llllll}\text { B } \boldsymbol{I} & \underline{\mathrm{u}} & \vdots & \text { 訏 } & \text { a } \rightarrow \text { ab } \\ 1206\end{array}$

The ammount of current flowing through R1 is not the same as the current flowing through R2. All the voltage goes through R1 which is the first resistor, but not all of it comes out because it is being held back by the resistor. What is left, then goes through R2. This is called voltage drop.

Part D

Calculate the voltage drop across R_{1}. Show your calculations and include units in your answer.

To calculate the voltage drop across R_{1}, you first have to find what percentage of the total resistance R_{1} is. $\frac{R_{1}}{R_{T}}=\frac{5 \Omega}{30 \Omega}=\frac{1}{6}$. You then have to multiple $\frac{1}{6}$ times the voltage of the battery which is $12 \mathrm{~V} .12 \mathrm{~V}\left(\frac{1}{6}\right)=$ voltage drop. The voltage drop across R_{1} is 2 V .

Anchor Score 2

This question has four parts.

The diagram shows a circuit with a 12 V battery, three resistors, and component K .

Part A

Identify component K and explain its main function.

Component K is an open switch. Its main function is to close the circuit or open it.

Part B

Component K is replaced with a piece of wire.
Calculate the total resistance of the circuit. Show your calculations and include units in your answer.

The total resistance is 30Ω. There is 3 different resistances and I added all of them together. $5 \Omega+15 \Omega+10 \Omega=30 \Omega$

Part C

Is the amount of current flowing through R_{1} the same as the amount of current flowing through R_{2} ? Explain your reasoning.

The amount of current flowing through R1 is not the same as the amount of current flowing through R2. It is not the same because R2 has a greater resistance than R1. When you divide their voltage by their resistance it will be different.

Part D

Calculate the voltage drop across R_{1}. Show your calculations and include units in your answer.

\rightarrow (略
 The voltage drop is 12 V because that's the voltage for each current even if they're added together or not.

Anchor Score 1

This question has four parts.

The diagram shows a circuit with a 12 V battery, three resistors, and component K .

Part A

Identify component K and explain its main function.

component K is a resistor. The current stops flowing after K .

Part B

Component K is replaced with a piece of wire.
Calculate the total resistance of the circuit. Show your calculations and include units in your answer.
R1 R2 R3
$5+15+10=30 \Omega$

Part C

Is the amount of current flowing through R_{1} the same as the amount of current flowing through R_{2} ? Explain your reasoning.

No, R2 has more current flowing through it because it has its own current of 15 ohms and R1's current of 5 ohms.

Part D

Calculate the voltage drop across R_{1}. Show your calculations and include units in your answer.
h \rightarrow 感
$V=I R$
$V=30(5)$
$V=150 \Omega$

Anchor Score 0

This question has four parts.

The diagram shows a circuit with a 12 V battery, three resistors, and component K .

Part A

Identify component K and explain its main function.

Component K represents a short circuit.

Part B

Component K is replaced with a piece of wire.
Calculate the total resistance of the circuit. Show your calculations and include units in your answer.

Part C

Is the amount of current flowing through R_{1} the same as the amount of current flowing through R_{2} ? Explain your reasoning.

B I $\underline{\mathrm{u}}$: 三	$\rightarrow+$	aby	1291
$\begin{array}{lll} \mathrm{R} 1=\mathrm{V}=\mathrm{IR} & 4 / 5=\mid 5 / 5 & \mathrm{R} 1=\mathrm{I}=0.8 \mathrm{~A} \\ \mathrm{R} 2=\mathrm{I}=\mathrm{IV} & 4 / 15=\mid 15 / 15 & \mathrm{R} 2=\mathrm{I}=0.26 \mathrm{~A} \end{array}$ No, the current flowing through R1 is not the same amount of current flowing through R2 because they have different resistances.				

Part D

Calculate the voltage drop across R_{1}. Show your calculations and include units in your answer.

In series, the voltage is split amongst the resistors equally.
3 resistors, total 12 voltage
$12 \div 3=4 V$

Set of Student Responses without Scores (for educator practice)

Series Circuit

Response A

This question has four parts.
The diagram shows a circuit with a 12 V battery, three resistors, and component K .

Part A

Identify component K and explain its main function.

The componet K is a switch. The switch's main function is to turn and off the circuit. It alows current to flow through.

Part B

Component K is replaced with a piece of wire.
Calculate the total resistance of the circuit. Show your calculations and include units in your answer.
The total amount of resistance of the circuit is 30
ohms.
$R_{1}+R_{2}+R_{3}=\square$ total resistance
$5+15+10=30$

Part C

Is the amount of current flowing through R_{1} the same as the amount of current flowing through R_{2} ? Explain your reasoning.
B $\boldsymbol{I} \underline{\mathrm{v}}: \vdots$ 決 \rightarrow त an 1232

The current flowing R1 is not the same amount of current flowing through R2. At first the current flows through the circuit. When it gets to R1 it powers it. Making the amount of current go down. Now when R2 gets the current it s not the same as it first was with R1.

Part D

Calculate the voltage drop across R_{1}. Show your calculations and include units in your answer.

\rightarrow त䀠

The voltage drop across R 1 is 9.6 V .
$12 \div 3=4$
$12 \div 5=2.4$
$2.4 \times 4=9.6$

Response B

This question has four parts.

The diagram shows a circuit with a 12 V battery, three resistors, and component K .

Part A

Identify component K and explain its main function.

Component K is a switch and it is used to open and close the circuit.

Part B

Component K is replaced with a piece of wire.
Calculate the total resistance of the circuit. Show your calculations and include units in your answer.

$$
\begin{aligned}
& \text { (回 } \\
& R_{T O T A L}=R_{1}+R_{2}+R_{3} \\
& R_{T O T A L}=5 \Omega+15 \Omega+10 \Omega \\
& R_{T O T A L}=30 \Omega \text { The total resistance of the } \\
& \text { circuit is } 30 \Omega .
\end{aligned}
$$

Part C

Is the amount of current flowing through R_{1} the same as the amount of current flowing through R_{2} ？
Explain your reasoning．

Yes，the amount of curren flowing through R1 is the same as the amount of current flowing through R2．This is because this circuit is a series circuit，and in a series circuit the current of the circuit will be the same at any point throughout the circuit．

Part D

Calculate the voltage drop across R_{1} ．Show your calculations and include units in your answer．

¢ त 前				
$I=\frac{V}{R} \quad 1=\frac{12 V}{3} \quad \quad I=0.4 \mathrm{~A}$	－Symbols			
30Ω	＋	－	\times	\div
$V=I R \quad \mathrm{~V}=0.4 A \cdot 5 \Omega$	\pm	－	．	1
$V=2 V$ The voltage drop across R_{1} is 2 volts．	$=$	\＃	呂	㗁
	y^{x}	\checkmark	$\sqrt[3]{ }$	$\sqrt[n]{ }$
	x_{i}	π	∞	（
	）	λ	Δ	Ω
	－			

Response C

This question has four parts.

The diagram shows a circuit with a 12 V battery, three resistors, and component K .

Part A

Identify component K and explain its main function.

Component K's main function is to let exess energy out

Part B

Component K is replaced with a piece of wire.
Calculate the total resistance of the circuit. Show your calculations and include units in your answer.

\rightarrow + 並

$$
\begin{aligned}
& 5+15+10=30 \\
& \frac{30}{3}=10 \\
& \mathrm{R}=10
\end{aligned}
$$

Part C

Is the amount of current flowing through R_{1} the same as the amount of current flowing through R_{2} ?
Explain your reasoning.

| B \boldsymbol{I} | $\underline{\mathrm{u}}$ | $\vdots \equiv$ | 坛 | $\rightarrow+$ aby | 1447 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

no because they have different ammounts of resistance

Part D

Calculate the voltage drop across R_{1}. Show your calculations and include units in your answer.

Response D

This question has four parts.

The diagram shows a circuit with a 12 V battery, three resistors, and component K .

Part A

Identify component K and explain its main function.

| B \boldsymbol{I} | $\underline{\mathrm{U}}$ | $\vdots \equiv$ | 立 | ↔ $\boldsymbol{\rightarrow}$ aby | 1489 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

K is motor.

Part B

Component K is replaced with a piece of wire.
Calculate the total resistance of the circuit. Show your calculations and include units in your answer.

Part C

Is the amount of current flowing through R_{1} the same as the amount of current flowing through R_{2} ？
Explain your reasoning．
\square
B $I \underline{\mathrm{u}}$: 三

No because one is more than the other．

Part D

Calculate the voltage drop across R_{1} ．Show your calculations and include units in your answer．

Response E

This question has four parts.
The diagram shows a circuit with a 12 V battery, three resistors, and component K .

Part A

Identify component K and explain its main function.
\square
Component K is a switch, its main function is to turn the circuit on and off. By bieng closed, the circuit is on. By bieng open the circuit is off. (Refering to the switch the one that is being closed and open).

Part B

Component K is replaced with a piece of wire.
Calculate the total resistance of the circuit. Show your calculations and include units in your answer.

Part C

Is the amount of current flowing through R_{1} the same as the amount of current flowing through R_{2} ? Explain your reasoning.

No, the amount of current would not be the same because current is voltage divided by the resistance. In resistor \#1 the current flowing through it would be 2.4 amps , but in resistor \#2 there would be .8 amps .

Part D

Calculate the voltage drop across R_{1}. Show your calculations and include units in your answer.

